Contents


Periodic Temperature

 

Function semiinf5(T_i,DeltaT,omega,alpha,x,time) returns the temperature for a given position and time within a semi-infinite body with a sinusoidally varying surface temperature using the relation provided in Table 3-2 of Nellis and Klein.

 

Inputs:

T_i - initial temperature of the solid  [C] or [K]

DELTAT - amplitude of surface temperature variation [C] or [K]

omega - angular velocity [rad/s].  The surface temperature is T_i+DELTAT*sin(omega*time)

alpha - thermal diffusivity (m^2/s)

x - perpendicular distance from surface [m]

time - time relative to impulse (energy impulse occurs at t=0) [s]

 

Example:

$UnitSystem SI K Pa J

T_i=293 [K]

DELTAT=15 [K]

omega=7.272 [rad/s]

c=383 [J/kg-K]

alpha=0.00011 [m^2/s]

x=0.01 [m]

time=0.5 [s]

T=semiinf5(T_i,DeltaT,omega,alpha,x,time)

 

{Solution: T=T=295.4 [K]}

 

Index